If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2-10=0
a = 4; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·4·(-10)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*4}=\frac{0-4\sqrt{10}}{8} =-\frac{4\sqrt{10}}{8} =-\frac{\sqrt{10}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*4}=\frac{0+4\sqrt{10}}{8} =\frac{4\sqrt{10}}{8} =\frac{\sqrt{10}}{2} $
| 22-3a=2(a+6) | | 4(2a-3)=3a-27 | | x²+6=0 | | x+7+7=49 | | x+29=31 | | x+3*7=21 | | x+3+7=21 | | 2x-15=2x+35 | | 22x²-33x=0 | | X=2+(y.y.y)=22 | | 2+(x.x.x)=22 | | 1.8t+32=144.5 | | 0.32x-0.416=0.8 | | t-1.7/3.2=4.5 | | 1.4w+8.68=12.6 | | 5(5x-6=67.5 | | 3z-24.6=12.6 | | 5y-18.6=16.9 | | |x+2|=|x-4| | | 2^(4x+3)+2=17*4^x | | X+(2x)=24 | | 12-2x=3x-2 | | 2x+30=4x-3 | | 25+y=51 | | (x+10)(x+14)=(x+14)=(x+20) | | 5x^2+28x=-3087 | | 5y=2.2+3y | | 5y=2.2+8.39y | | 10x-x+52=2815 | | 5y=3+2y=17 | | 10y+7y+15=321 | | 17x+x-17=253 |